THE ESTABLISHED MOTION OF A VISCOPLASTIC MEDIUM
BETWEEN TWO COAXIAL CONES AND IN A
SECTOR BOUNDED BY TWO SIDES

A, D, Chernyshov

Usually the properties of viscoplastic media are studied using a cylindrical viscosimeter. There is
an error in similar measurements because of the effect of the bottom. Below we consider the flow of a
medium in a conical rotating viscosimeter which does not have this disadvantage. We obtain equations for
the physical characteristics of the material even if the viscous properties of the material are nonlinear.

In the second problem we consider the flow of a viscoplastic medium inside a sector bounded by two
sides, the boundaries of which are rotating slowly and monotonically, It is proved that there are no rigid
domains in this flow, This result can be used in certain industrial processes. Thus, in the pouring of a
viscoplastic polymer into a mold it is frequently necessary that the polymer should occupy the whole volume
of the mold. This is difficult to achieve if the mold has recesses. As the polymer fills the mold, a rigid
domain is formed near an edge, and this acts as a "bottleneck" and prevents the mass flowing into the cor-
ner. If the boundary of the mold can be made movable, the bottleneck is broken. To a large extent this helps
to fill the region at the bottom of the corner with the mass.

In both problems the motion is assumed to be quasistationary, and the effect of temperature and iner-
tia forces is ignored.

1. A rheological model of an incompressible viscoplastic medium is shown in Fig. 1, where the ele-
ments of the viscosity V and the plasticity P are combined in paraliel. Let si.V and Si'p denote the stress
tensors of these elements, We can write the condition for plasticity with yielé point k; in the Mises form:

s (5§ — ssiady) = 2k (t.1)
The associative law of the flow yields an equation defining the element P in the form [1]
5§ = V 2y e 4 Vssiidiy, Mo = ey =0, 5 = Ys (03,5 + v3,0) 1.2)

where vy is the velocity of the particles of the medium. We can write the equation for an element of the
viscosity in the form

85 = 2n (Is)e;5 < 1/331:112651' (1.3)

The relation between the viscosity coefficient 1 and the invariant I, must be such that the second law
of thermodynamics holds

sgei; = 20,20 (1) >0, of  n(l)>0 (1.4)
In addition to this inequality, the viscosity coefficient must satisfy the equation
imI*n () =0 (I, —0) (1.5)

This condition implies that the rate of dissipation of energy in the medium due to its viscous proper—
ties tends to zero as the rate of deformation tends to zero.

Voronezh, Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 93-99,
September-October, 1970. Original article submitted May 18, 1970.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

791



The stresses oy; in the continuous medium are
the sums of the stresses on the elements of viscosity
and plasticity, From this we obtain the equation def-
ining the viscoplastic medium with nonlinear viscos-
ity

85 = 1V 2kl + 20 (1)1 &35 — pdy; 1.8)

where p is the hydrostatic pressure.

Fig. 1 Fig. 2 2. Let us consider the flow of a viscoplastic
medium between two coaxial cones (Fig, 2). The me-
dium fills the space between the cones. The free surface of the medium is assumed to be spherical with
radius ry. The inner core, with semiapex angle ¢;,rotates with constant angular velocity w; and the outer
cone, with semiapex angle 6,,does not move. This model is called a conical viscosimeter. We shall dis-
cuss the problem in a spherical coordinate system (r, ¢, ¥).

We assume that the velocity field has the form
vy =9, =0 v, = ro (¢) sin @ (2.1)
This implies that every particle moves in a circle of radius r sin ¢ about the axis of the cones with

constant angular velocity w(g), There is only one nonzero component of the rate of deformation

iﬂ 1 i

323..——-72- Py Sillq)z-é—’}’, IE=—V_—~2—ITI (2.2)

The sign of v depends on the direction of rotation of the inner cone; hence, for the sake of definite-
ness, we shall assume that v is of positive sign. We can write the equations of equilibrium in the spherical
coordinate system in the following form for the given problem: ~

a B d
—a—-i;’-::??%zo’ d—z;——%‘zfctgq}:{)’ ’L':(st (2.3)

If we integrate these equations, we obtain

P = ¢, T = ¢y / sin? (2.4)
From (1.6), (2.2), and (2.4), we derive the differential equation
(2.5)

Ny k=—2—, o0  F(0'sing)= —a=—Fk

gin*g ’ sin® @
Fyy=nr k=rksigny (2.6)
The constant of integration ¢, is determined after specifying the pressure at some point in the domain

of the flow. The quantity ¢, and the other constant of integration of (2.5) are determined from the two bound-
ary conditions

o = o, for g =0, o =0 for ¢=20, (2.7

or
=@, for v=0;, o=0 =0 for ¢ =0* (2.8)

The boundary conditions (2.7) are used if the whole medium between the cones is involved in the mo-
tion, while (2.8) is used if only part of the medium adjacent to the inner core takes part in the motion. In
the latter case we must have

0* < 6, (2.9)
We assume that the yield point and the relation between the viscosity coefficient and the rate of de-
formation are unknown and have to be determined, We can show that this can be done using an experiment

with aconical viscosimeter. We note that the determination of the function n(y) is equivalent to the determin-
ation of the function F(y).

From observation on the motion of particles of the medium at the free surface we can find the form
of the equation
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o =o (p) (2.10)
Knowing w(¢), we can easily determine the functions

v=7@®, 9=¢® (2.11)
Substituting ¢ = @(y) into the right side of (2.8), we find

C1
F(T) =sin2q)(T) —k (2.12)
It remains to determine k and ¢,;. We assume that part of the domain occupied by the medium adja-
cent to the inner core is at rest. This is possible if w, is small. At the free surface of the medium the
boundary of the region involved in the motion is well observed and the angle 0* is determined. At the sur-

face of the cone with semiapex angle #* bounding the region of motion of the medium, the rate of deforma-
tion vanishes and so from (2.5} we obtain

¢y = k sin?Q* (2.13)

We find the yield point k as follows, If w;is very small, but not zero, the rate of deformation is also
small, In this case at the surface of the inner cone the stress is at the yield point. This allows us to ex-

press the yield point in terms of the torional moment M, which must be applied to the inner cone in order
to move it from its position

k= 3M,/ 2n re® sin® 0, (2.14)
Substituting (2.13) and (2.14) into (2,12), we can obtain equations for F(y) and 7 (y).
If we already know the form of the function F(y), for example,
F () = nep™ (2.15)

the problem of determining the nonlinear relation between the viscosity coefficient and the rate of deforma-

tion is considerably simplified. In the case of {(2.15) this problem can be reduced to the determination of
the coefficient 1, and the exponent m,

To determine 1y and m we substitute (2.15) into (2.5). As a result we obtain the differential equation

do . o kiym
Wsmq)_(nosin"tp ’r]o)
From this we have
4
_ 1 ¢ kB X1/m
o (¢) “S e (W‘E’) do + o (2.186)
Hy

This integral can be computed explicitly if 1/m is an integer. If we are using the boundary conditions
(2.8) the constant ¢, is found from (2.13) and the angle 6* must satisfy the equation
9%

1 i & ksilm
eS sin @ ( Mosin? @ —7]?) ?+ =0 (2.17)

After computing 6* from (2.17), we find 1, from
9*

_ 1 1 2 ijm
noim = — a,‘§ s (qu_~ k) dg (2.18)

1

The exponent m is determined if we compute the angular velocity w at some intermediate point be-
tween the cones and use (2.16),

If w, is large, so that (2,9) does not hold, then, by (2.7), ¢, is determined by the equation
92

i o1 ko Um
BS g (Ww?ﬁ) dp 4 a5 =0 (2.19)

\
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For a linear viscosity law (m =1), from (2.16) we find

_a—2k £ 61 1 [cosQ cos 01 \ .
o=22F (e d [ @) - o (g — e oo (2.20)

3. Suppose a medium filling the open sector bounded by two sides with angle 26 moves with velocity
w due to a slow monotonic change in the angle 8. There is no flow of the medium in the direction of the edge
of the sector. We shall discuss this problem in a cylindrical coordinate system x; =r, x, = ¢, x; =z,

The incompressibility condition is

vy v1 i dvs
ot gy =0 (3.1)

It follows from (3.1) that there is a potential &(r, ¢) such that

1 o0 oD
U1=T-—-——q> . Vy = — ar (3.2)

We seek the solution of the problem in the form
Q(r, ) =rf(9) n=rf, v=—2f (3.3)
The nonzero components of the rate of deformation are
83 = —&gy = [, &9 = Yof” (3.4)
For the nonzero stress components we have, from (1.6) and (3.4),

ou=2pf +p(r ) 0n=—2f +p, on = (3.5)
28 = V2kI,t 420 (1) °

In (3.5) only p depends on the two coordinates r and ¢; the remaining variables depend only on ¢. We
can write the function p(r, ¢) in the form

P =polnr +p, (9 (3.6)

We have to substitute (3.5) and (3.6) in the equilibrium equation

dsn +_:_ 3512 + G11 — Gog =0’ 8612 _1__1;_ 962 2513 _—0

ar o9 r ar r og T = 8.7
After substituting (3.5) into (3.7) we obtain two differential equations for p;(¢) and f(¢)
py = 28'F, 2L,y + (7" ++4f) 1208 + (#)2dB / dI,] = 0 (3.8)

Because the medium adheres to the moving boundaries, the solution of equations (3.8) has to satisfy
the four boundary conditions

f=0, f=do for @=46 (3.9)

If the moving boundaries are slippery, then, from the absence of slip and the condition that the medi-
um does not flow across the boundary we find the boundary conditions

f7=0,f=+40 for ¢=486 (3.10)

In both problems the flow of the medium is symmetric about the bisector of the angle. From the sym-
metry of the flow of the medium and the expression (3.3) for the velocity it follows that the function f (p) is
antisymmetric. In this connection the boundary conditions (3.9) and (3.10) can be simplified and reduced to
the following forms

f=0 f=&for =20 (3.11)
f’ = O’ f = @ for P = 8 (3012)

The general antisymmetric solution f{(¢) of the first equation of (3.8) depends on one arbitrary con-

stant of integration and the unknown constant p,, which are determined from the two boundary conditions
(3.11) or (3.12). Obviously

794



f=7=0for =20 (3.13)

This implies that the bisector of the angle can be assumed to be a fixed boundary at which there is no
adhesion. Thus, the solution of the problem with the boundary conditions (3.11) is at the same time the so~
lution of the problem of the flow of a medium in a sector bounded by two sides forming an angle 6 when
there is no slipping at the moving boundary. If we consider (3,12) and (3.13) together, we find that the solu-
tion of the problem with the boundary conditions (3,12) is also the solution of the similar problem of the flow
of a medium in a sector bounded by two sides forming an angle 8 in which one boundary is movable and the
other fixed. By analogy with (3.13) we must have f® = 0 for ¢ = 140 on the bisector of the angle 8. We can
continue to bisect the angle, and each time we must have f® = 0 on the bisector of each sector. This leads
to the conclusion that the solution of the problem with the boundary conditions (3.12) must satisfy the
equation

=0, f=1{w/8) ¢ (3.14)
Substituting (3.14) into (3.8), we find that

po = —2ksigno — 4 (0 /8) 1 (Y 2w/0)

3.15
Py (@) = const, Opp = 3 {po In r - const) ( )

The constant is determined by specifying the pressure at some point of the domain of the flow., As we
saw from (3.14), the velocity field does not depend on the viscous and plastic properties of the medium.
These properties only make a contribution to the distribution of the stress field

O — p=p —0y =ksigno +2n(V2e/8), o, =0 (3.16)
We shall prove that, in the flow of a medium with velocity field (3.3) satisfying (3.8), there is no rigid

kernel. If there is such a kernel, at its boundary the following equations must be satisfied:

vy =1 (f'cos ¢ - 2f sin @) = u,

A
vy == r(j’ sin ¢ —2 feos g) =0, g;=20 (3.17)

where u, is the velocity of motion of the rigid kernel parallel to the axis of symmetry — the x axis. Since U
is independent of r and ¢, from (3.17) we find the conditions for the supposed boundary of the rigid kernel

—f = =0 (3.18)

We can show that (3.18) implies that all subsequent derivatives of f vanish. Tn approaching the bound-
ary of the rigid kernel from the side of the domain of the flow, we find in the limit that
I

lim (7“—\)2 ~ 4+ 2lim (

I = o+ 2lim (L (3.19)

If f® = 0 at the boundary of the rigid kernel, the limit in (3,19) is 3. The expression in brackets in
the second equation of (3.8) is nonzero and so f™ =0, Differentiating (3.8) successively several times, we
find that all the derivatives of f vanish. Hence the solution must be trivial, but it does not satisfy the bound-
ary conditions (3.11) and (3.12). This contradiction proves that there is no rigid kernel,

The general solution of equation (3.8) with the boundary conditions (3.11) has notbeen obtained. Forthe
special cases when 0 = 0; = /47 or 8, =%, if we assume that I, = const, we find the solution of the prob-
lem (3.8), (3.11) in the form

f=asin2¢, a=(—1)" (i=1,2)
1,=2Y2lal, B =Hh4la] +n(), po=0, p,= const (3.20)
O11— P1 = P1 — Oy = 4fa cos 29, 0y; = —4Pa sin 2

For a viscous fluid, when k = 0 and 1 = 1, = const, the solution of equation (3.8) with the boundary con-
ditions (3,11) has the form

fe= {29 cos 20 — sin 2¢) 81w cos 26

Weos 20 —snd ' P = T2 —Seceszo M7 -+ const (3.21)
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In the flow of a viscous incompressible fluid under consideration the velocity field is independent of
the viscosity coefficient. As # — 0 the stresses and the velocity grow unboundedly. There is a critical
value of the angle 6* which is the least positive root of the transcendental equation 26 =tan 20, As 6 — 0% —
0, we must have w > 0, so that p > 0 in the neighborhood of the origin, When 0 — #* + 0, then, if we are to
have p > 0, we must have w < 0. If these conditions do not hold, from (3.21) we find that for any choice of
of the constant there can be found an r; such that for r < r; the pressure becomes negative, In the regions
where the pressure becomes negative there are cavitational bubbles. In this connection the solution of{3.21)
can only be used in the neighborhood of the origin defined by the inequality r < ry.

As the boundaries of the sector close {§ — 0}, the stresses become infinite. But we can choose the
function w(8) so that the stresses are finite, when 8 — 0. From (3,21) for small 8 we have

p = 3B % (6) Inr 4 const (3.22)
From (3.22) we find that for finite p we must have
do/dt = o () = —a? (3.23)
where ¢ is a coefficient of proportionality. Integrating (3.23), we obtain
0 = (0, - 2a8)™ (3.24)

1t follows from. (3.24) that if the stresses are to remain finite it takes an infinite length of time to
close the boundaries of the sector,

The problem of the flow of a viscoplastic medium in a sector parallel to its edge was considered in
21
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